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ABSTRACT 

I n  this, the first part  of a two-part study, we examine the rationale of the stochastic dynamic approach to nu- 
merical weather prediction. Advantages of the stochastic dynamic method are discussed along with problems as- 
sociated with the method. This method deals with the initial uncertainty by considering an  infinite ensemble of 
initial states in phase space, relative frequencies within the ensemble being proportional to probability densities. 
The evolution of this ensemble in time, given by the stochastic dynamic equation set, is based upon the original 
deterministic hydrodynamic equation set. One may consider the latter set as a subset of the  former. Insight into the 
nature of these equations is obtained by deriving the energy transformations associated with them. A simple baro- 
clinic model is used to isolate the energy concepts and relations. The energetics yield qualitative and quantitative 
information on the nature of the growth of uncertainty. It is found that the baroclinic instability mechanism is 
responsible for most of the error growth as would be expected. 

Previous predictability studies have considered that the simulation of the forces governing the atmosphere has 
been perfect. The effects of imperfect forcing can be viewed with the stochastic dynamic equations by adding another 
dimension to phase space for each parameter considered to be uncertain. The effect of the inclusion of this imperfect 
forcing is shown by the new energetic relations that result, and by numerical calculation of the changes in the 
growth of uncertainty. 

The stochastic dynamic equations are faced with the same mathematical problem of “closure” found in ana- 
lytical treatments of homogeneous isotroFic turbulence; that  is, an approximation concerning higher order moments 
must be made to  close the system. A number of closure schemes are studied and it is found that  the third moments, 
which are individually small, should nevertheless be retained. It is shown in the equations and verified by numerical 
calculations that the third moments do not affect energy conservation but affect energy conversion between uncertain 
components, with the eventual result of altering the forecast of the mean. An eddy-damped third moment scheme 
is found to give extremely accurate results when compared to Monte Carlo calculations. 

1. INTRODUCTION 
There is considerable interest today in the limits of 

predictability of the atmosphere. Perhaps a more relevant 
concern than the “limit” is what the practical predicta- 
bility values will be for the various scales of atmospheric 
features in the near future, say, 1, 5, or 10 JTT from now. 

What effort must be expended to  achieve what degree 
of predictability? This study is concerned with a method 
that can deal with the above concern. Moreover, a more 
prgfound question that some meteorologists must even- 
tually ask themselves is, “What course does nu&e$ical 
prediction follow after these practical limits of pr$dicta- 
bility for the various features have been reached?” 

One answer to  the above question is to  use the uncer- 
tainty of the forecast itself as information. Certainly, 
the variance or uncertainty of any meteorological variable 
is important information, and may be as valuable as the 
forecast of the variable itself. A technique for coping 
with the uncertainties that exist in the initial conditions 
of a numerical forecast is explicitly given in the method 
of stochastic dynamic prediction (Epstein 19693). 

In  numerical weather prediction, there are several 
sources of uncertainty that are part of the mathematical 

initial-value problem. Acknowledging these sources, the 
stochastic dynamic formulation of that problem forecasts 
the expected value and uncertainty of every meteoro- 
logical variable at each point in the space domain and at  
every instant of time. No assumptions are made concern- 
ing the physics of the original problem. 

Some of the uncertainties that exist in the numerical 
forecasts are due to  errors in the initial conditions. A list 
(by no means exhaustive) of sources of uncertainty in the 
initial conditions of a numerical forecast might be: errors 
in the raw data (instrument, transmission, etc.), errors 
arising from the heterogeneous data set whose signal only 
partially describes the complete inertial-gravity wave and 
turbulence phenomena that exist at  a particular instant 
in the atmosphere, errors caused by the complete absence 
of scales of motion unresolved by the paucity of the data, 
“random” analysis error (Thompson 1957) arising from 
the reconstruction of the grid analysis from a finite num- 
ber of data points, errors caused by loss of significant 
kinetic energy near the jet stream from smoothing by the 
analysis technique, and that due to further smoothing of 
the smaller scales that is usually necessary to avoid 
amplification (beyond physical reality) of the short-wave- 
length components. - 

The above are some of the errors that will limit the prac- 
tical value of predictability. In  addition, the numerical Now =signed to the National Meteorological Center, National Weather Service, 
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models used in forecasting are not perfectly simulating the 
physical processes of the atmosphere. Indeed, some of 
these processes have not yet been fully explained. This 
obviously decreases the practical value of predictability. 

If one could assume that all the above errors could be 
eliminated and, in addition, if it could be assumed that 
the physics of the atmosphere were “perfectly” known 
and/or could be perfectly parameterized for numerical 
computation, one would still be faced with a source of 
error. The hydrodynamic fields must be represented in a 
k i t e  manner-in terms of a space mesh or in terms of 
orthogonal coefFxients. Thus, the smallest scales of 
motion that are unresolved must be ignored or treated 
statistically. However, the nonlinearity of the equations 
causes statistically treated small scales to give a random 
perturbation to the motions of the large scales, causing 
these scales to be increasingly unpredictable with time. 
This “aliasing effect,” which is summarized by Leith 
(1969), increases computational instability. The computa- 
tional instability can be dealt with in a number of ways 
(using a filtering technique at  various points in time, using 
a finite-diff erence scheme that inherently smooths, using 
an artificial viscosity) ; however, the generation of uncer- 
tainty at  higher scales still remains. It is this last type of 
uncertainty that is generally felt to be responsible for the 
limit of predictability of various scales. 

The nonlinear interactions between scales (known and 
unknown), coupled with physical forces that are not per- 
fectly understood, pIoduce uncertainty and make state- 
ments of practical predictability only “speculation” when 
the usual meteorological equations are used. 

The stochastic approach to predicting the atmosphere 
appears to be capable of reducing that speculation of 
predictability. Consider a model of the atmosphere 
described by a certain number of variables. A stochastic 
model would specify the complete joint probability dis- 
tribution of all the variables at  each point in time, and 
the whole process conceived as a continuous development 
in time would be a stochastic method. 

The model equations used in predicting the atmosphere 
are assumed to be deterministic; that is, the exact present 
state of the dependent variables completely determines 
the exact future state of those variables. Since the initial 
conditions of the atmosphere are known only in a proba- 
bilistic sense, Epstein’s method seems appropriate. As 
will he seen later in the paper, the deterministic equations 
are but a subset of the stochastic equations and, thus, a 
tremendous amount of computer power is required to 
utilize the stochastic set. There remain some fundamental 
problems and questions to be solved and answered before 
these equations can be incorporated on a practical basis. 

The purpose of this paper is to resolve those problems 
and questions left open in the paper of Epstein (1969b). 
The rationale of the stochastic dynamic equations will 
be critically evaluated. The physical meaning of the 
relationships that exist within these equations will be 
discussed for the first time. An energy diagram will be 
derived which shows the energetic relationships that 

must exist in any prediction or simulation model in which 
an account of the uncertainties is made. 

The stochastic dynamic equations are actually an in- 
finite unclosed set of coupled equations which cannot be 
solved until a method of closing them is devised. This 
question of “closure” is dealt with and is viewed in 
analytical terms. 

Freiberger and Qrenander (1965) discuss the same 
problem that this paper is concerned with-how to deal 
with the uncertainties that limit predictability, rather 
than what the limit of predictability is. They propose 
stochastic solutions to “limited” problems using an 
approach analogous to classical statistical mechanics. 
They did not offer the meum to the solution of the com- 
plex atmospheric equations, but stated what form that 
solution should take. A relevant quote from their paper 
is: “Starting from the dynamic equations, whether in 
their primitive or in a modified form, we should consider 
an ensemble of possible solutions. The uncertainties and 
lack of completeness of our initial weather data would 
then correspond to a probabilistic superstructure on the 
ensemble. . . . The conceptual, analytical and numerical 
difficulties inherent in this approach are so overwhelming 
that prospects of a completely successful analysis seem 
rem0 te.” 

It is hoped that the present study is a significant step 
toward unraveling those conceptual, analytical. and 
numerical difficulties. 

I. THE STOCHASTIC DYNAMIC EQUATlONS 
To visualize the difference between a deterministic 

and stochastic dynamic forecast of a system, consider 
that there are N dependent variables describing the 
system. The deterministic prognostic equations can be 
expressed in the general form 

where the X t  are the N dependent variables describing 
the system. The N variables form an N-dimensional 
Euclidean space whose coordinates are X,, . . . , X N .  
Such a space is called a phase space, where each point in 
the phase space represents a possible instantaneous 
state of the system. 

The initial state of the atmosphere is then represented 
by a single point in the phase space and the determi- 
nistic forecast gives the trajectory of that point in phase 
space. In figure 1, the N-dimensional phase space is repre- 
sented by any two dimensions. In this figure, point S is 
the initial position of a single point in phase space and 
S‘ is a point on the deterministic trajectory of that same 
point at  a later time t , .  

The results of all the possible uncertainties in the 
final numerical analysis leads to  a great number of possible 
initial states in the previously defined N-dimensional 
phase space. Each of the different initial states will yield 
a different trajectory in phase space even though sub- 
jected to the same set of prognostic equations. Slightly 
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FIGURE 1.-Evolution of a point and an ensemble in phase space. 

different initial states may yield significantly different 
trajectories. This is to be expected in light of Lorenz’ 
(1963~) discussion of nonperiodic trajectories. He con- 
cludes that two atmospheric states differing by imper- 
ceptible amounts may eventually evolve into two 
considerably different states. 

Is there a way to know which initial state is the correct 
one? Were the matter of initializing the dependent 
variables of the atmosphere merely a question of in- 
accurate random measurements, then, in theory, an aver- 
age of an inJnite set of measurements would converge to 
the “true” state. However, operational predictions 
depend upon a single set of data and it is impossible to 
know the actual error. Moreover, the determination of the 
proper initial conditions of the numerical prediction 
problem is more complex than the theory of random 
measurements. 

Consider an observing net with the same data density as 
exists today or even as it might exist 10 yr from now. 
Even if each individual observation were a perfect rep- 
resentation (Heisenberg’s Principle of Uncertainty ignored 
for the moment), such data would not be acceptable 
as initial conditions of the numerical prediction model. 
Each measured signal would be a superposition of many 
atmospheric modes, some for which a complete spatial 
description could not be given by the coarse data res- 
olution. Indeed, this is why the microscale features, 
inertial-gravity wave oscillations, turbulence, etc., are 
smoothed and/or modified in the final numerical analysis. 
The analysis is made physically and computationally con- 
sistent with the numerical model. From the viewpoint of 
the model, then, there is no true initial state of the atmos- 
phere. However, there ought to exist some state which is 
a t  least statistically optimal and consistent with the 
objectives of the numerical prediction scheme. 

The fact that the observations do have errors further 
complicates the selection of that optimal initial state 
which is consistent with the intentions of the prediction 
model. It seems logical, then, to express the initial con- 
ditions in terms of a probability distribution. This 
would mean considering an infinite ensemble of initial 
states in phase space with relative frequencies within the 
ensemble proportional to the probability densities. This 
initial joint probability distribution will evolve in a non- 
linear manner according to the dynamic equations. It 
will be seen that the stochastic method only forecasts the 
low-order moments of that distribution, and that the 
lowest order moments, the means, are by definition the 

“expected values” of the dependent variables consistent 
with the original analysis, all the uncertainties, and the 
nonlinear dynamic processes a t  work during the length 
of the forecast. 

Such an ensemble is shown in figure 1 where E and S 
coincide and the ensemble mean, E, evolves to E’. Because 
of the nonlinearities, there will eventually be a time 
tl where E’ and S’ would differ. This is seen in independent 
Monte Carlo and stochastic dynamic calculations pre- 
sented in the latter portion of this paper and is also dis- 
cussed by Epstein ( 1 9 6 9 ~ ~  1969b). 

How one might obtain an approximation of the ini- 
tial joint probability distribution or, at  least, of the low- 
order moments of that distribution will not be the subject 
of this paper. For our purposes, we shall consider that 
by some method (deterministic or stochastic) the best 
possible physically consistent analysis has been made. 
Because of all the associated uncertainties, we consider the 
analyzed values of the N variables to be expected values 
having a variance or measure of uncertainty associated 
with each. 

There remains the problem of determining the evo- 
lution of the ensemble. In  terms of the atmospheric pre- 
diction problem, this has recently been accomplished 
independently and at  about the same time by Tatarskii 
(1969) and Epstein (1969b). The final result of each author 
was the same, but each had a different conceptual basis for 
the techniqu,e and each had a different interpretation 
of the result. Both authors advocate using the dynamic 
equations to find the probability distribution of future 
meteorological fields, not the complete probability den- 
sity distribution over the entire phase space-this is an 
impossible task-but only the first and second moments 
of the distribution over phase space. Both drop third and 
higher order moments to close the system of equations. 

Tatarskii uses a simple nonlinear form of a prediction 
equation and from it derives the Liouville equation de- 
scribing the evolution of the probability density. Epstein 
considers the one-dimensional probability equation of 
Gleeson (1966) but extends it to N-dimensions, correspond- 
ing to the N-dimensional phase space under consideration. 
This equation is exactly the same as Tatarskii’s Liouville 
equation. Epstein calls his equations the “stochastic 
dynamic” set of equations for the atmosphere. This 
nomenclature is adopted here. Epstein presents numerical 
results using a simple barotropie. model with only eight 
orthogonal functions representing the space domain, where 
the amplitudes of these orthogonal functions are functions 
of time. He drops third and higher order moments and 
calls the resulting equations the “approximate” stochastic 
dynamic equations. 

Consider writing the hydrodynamic equations in the 
general form given by Lorenz (1963~) as 

where p and q are dummy indices, (’) refers to a time 
derivative, and the a’s, b’s, and e’s are constants describing 



8 54 MONTHLY WEATHER REVIEW Vol. 99, No. 11 

nonlinear interactions, external forces, and dissipative 
mechanisms. The dependent variables, X i ,  could be grid 
point values or amplitudes of orthogonal functions, in 

ing the results of the truncated system of equations, is the 
fundamental question to be answered. 

principle, but the latter form of specifying the spatial 
dependence will be used here. From the definition of 
expectation, the expected value of f(X) a t  time t is 
given by 

EIKWI=Jrn --m f(-%(Z wz (3) 

w 

where dX=dXl,, dX2, . . ., dXN and +(z, t )  is the probability 
density that satisfies 

JJ. . . J+(Z, t)dXi,dXz, . . ., dXN=l 

over the phase space. One can then derive the following 
relationships for Xf, any variable of the set of variables 
XN that makes up the phase space: 

E(X)=Pr,  (4) 

E(Xf  Xi) =Pi Pj + uti, (5) 

+ ~jut.t+ ~l.turj+ r i j k  (6) 

and 

where : 

-% Xk) =PtPj Pk+ Pf Q j k  

pr is the mean of Xr ,  
utj  is the variance if i=j, covariance if i # j ,  
7 f j k  is the instantaneous third moment about the 

and where Xi, pi, uu, T f j k  are all functions of time. The 
equations for the means and the second moments about 
the means corresponding to the deterministic set [eq (2)] 
have been derived by Epstein (196%) : 

mean, 

P, !7 P 

If there were no uncertainties, then the upq in eq (7) would 
be zero, there would be no need for eq (8), and eq (7) 
reduces to eq (2). 

Solving eq (7) and (8) requires knowledge concerning 
the third moments about the mean. One can derive a.n 
equation for the third moments (cf. Fleming 1970), 
but it involves fourth moments. The complete stochastic 
dynamic equations form an infinite unclosed set of coupled 
equations. The equations are thus unsolvable until an 
algorithm is devised to close the set. The algorithm or 
closure scheme chosen by Epstein was just t o  drop the 
third moment terms in eq (8). The implications of this 
technique and other closure methods are discussed below 
where the closure problem is studied more fully. It will be 
mentioned here, though, that even if the third moments of 
the ensemble are initially zero (for example, the variables 
are multivariate normally distributed initially) they will 
not remain zero. The time required for the third moments 
to grow and the extent to  which they will grow, thus alter- 

3. APPLlCATlON TO A 
Epstein (1969b) used a simple barotropic model of the 

atmosphere for his stochastic dynamic equations. In a 
barotropic atmosphere, there is no change of wind with 
height so that the atmosphere can be characterized by a 
single level. Since the early days of numerical fore- 
casting, the barotropic model has been used to forecast the 
500-mb level of the atmosphere. I n  such a model, the 
only energy exchange that can take place is between the 
kinetic energy of the eddies and the kinetic energy of the 
zonal flow. Thus, it is the next logical step to  use a more 
complex model of the atmosphere for the stochastic 
dynamic equations. On the other hand, there are many 
fundamental questions to be answered concerning the 
dynamics and energetics of an ensemble in phase space, so 
that it is desirable to  keep the model simple enough to  
isolate the answers to these questions. 

A model which ideally suits the purpose here was used by 
Lorenz (1963b) to study different regimes of flow. This 
model was extended by increasing the spectral resolution 
(Lorenz 1965) in a study of predictability. The ex- 
tended model transforms the space domain into orthog- 
onal functions which describe three different wave num- 
bers in the x-direction and two orthogonal modes in the 
y-direction. ([‘Mode” refers to the y-variation.) This 
model is the basic model used in this study. It is also 
extended to include 15 different waves in the x-direction 
for a predictability study to be described in part 11. 

The details and equations of this two-level model were 
developed by Lorenz (1960, 1963b, 1965) and are only 
stated here. The basic equations are the quasi-geostrophic 
vorticity equation and the thermal equation, that can be 
mitten with 5, y as horizontal coordinates and pressure, 
p ,  as the vertical coordinate. The equations for the model 
written in spectral form are 

where + and e are nondimensional dependent variables 
representing the mean wind and mean potential tempera- 
ture; K ,  K ’ ,  h, u,  and the e; (all described below) are non- 
dimensional constants; ai and C,,, are constants depending 
upon the choice of the orthogonal functions F,  used to 
represent the space domain (described below). Quantities 
have been made dimensionless by appropriate scale factors 
including a length L and a timef’ (fis the Coriolis param- 
eter assumed constant in this case). The dot in eq (9) and 
(10) denotes differentiation with respect to the dimension- 
less time. 
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A simple two-layer model like this is incapable of de- 
scribing the complicated boundary-layer physics of the 
real atmosphere. Therefore, it is necessary to parameterize 
the boundary-layer effects by the use of coefficients of 
heating and friction. A frictional drag with coefficient 2~ 
is introduced at  the lower surface, proportional to the 
velocity in the lower layer. A frictional drag at the bound- 
ary separating the two layers with coefficient K‘ is intro- 
duced, proportional to  the shear at this surface. There is a 
heating of the lower layer, proportional to the difference 
between the temperature of the lower layer and a pre- 
assigned temperature field e*, characterized by a coefficient 
2h. A coefficient for heat exchange between the layers 
cancels out when u (a measure of static stability) is con- 
sidered constant as discussed below. 

In  his application of this model to a consideration of 
predictability, Lorenz (1965) considered u as a constant in 
space and time. This assumption concerning u is used here, 
so that predictability results can be compared to  those of 
Lorenz. If u is a function of pressure, as in the real atmos- 
phere, this leads to products of three variables-which, in 
turn, means that at  least some third moments must be 
retained. If the model was “primitive” instead of quasi- 
geostrophic, the equations would contain no triple products. 

To solve these equations, we must determine the values 
of a,  and c i j k .  These values are determined by the chosen 
set of orthogonal functions F,. The choice of the functions 
depends upon the geometry of the space domain in which 
the model equations are applied. Following Lorenz (1965), 
these functions are given over an infinite channel of width 
nL having walls at  the surfaces y=O and y=rL,  where 
the flow in the channel is periodic along the length, with 
a specified fundamental wavelength. The functions are 

=1, 

@om=& cos mylL m=1, 2, 

‘P,,=2 cos (mx/L) sin my/L 

@;,=2 sin (naz/L) sin my/L 
m=1,2;  n = l ,  2, 3, (11) 

‘)71=1,2; n=l,  2, 3 

and 

where a is an integer chosen to specify the ratio of the 
fundamental wavelength in the 2-direction. 

It is readily verified that these functions are indeed 
orthogonal. For clarification in deriving the energy re- 
lationships for the stochastic dynamic form of the above 
deterministic spectral equations, the following notation 
is adopted for the 14 functions: 

and 

FIGURE 2.-Initial stream field $ for deterministic and stochastic 
dynamic methods. 

Note that functions 1 through 7 represent mode 1, and 
8 through 14 refer to mode 2. The zonal components 
of the flow are functions 1 and 8;  the eddy components 
are all the other functions. 

The method of obtaining the a; and C i J k  is given by 
IAorenz (19636) and their values are given by Fleming 
(1970). There are certain “selection” rules that admit 
desired sets of pairs of functions for the nonlinear term on 
the right side of the spectral equations; these pairs of 
functions are those which interact with the third function 
on the left of the spectral equation. For the 28-variable 
model (14 orthogonal functions for $ and e), the different 
pairs which interact with each of the respective functions 
are determined from the “selection” rules and stored in 
tables. 

The physics of the model to be used can be conveniently 
summarized. The quasi-geostrophic equations have been 
used to describe thermally forced rotating flow in the 
domain of the infinite channel. Sound and gravity waves 
have been filtered from the solutions by the hydrostatic 
and geostrophic equations. The transport of momentum 
by the vertical motions and by the divergent part of the 
horizontal motions has been left out of the vorticity 
equation. However, the transport of heat by the total 
horizontal and vertical motions is present because no such 
assumptions were made in the thermal equations. Flow 
in the model is slowed by internal and surface friction. 
There is no vertical velocity a t  the top and bottom of the 
model, and no exchange of heat and momentum through 
the sides of the channel. 

In all the calculations in this study, the finite difference 
scheme used for the time derivative in eq (9) and (10) is 
the fourth-order Kutta-Simpson method which is described 
in many texts (e.g., Hildebrand 1965). 

An example of the results of a deterministic and 
stochastic dynamic forecast with the model is given below. 
The initial stream field for both methods is shown in 
figure 2. The linear and constant terms have been set to 
zero which means the model is now adiabatic and friction- 
less. The mean values of $ t  and Or: are the same as the 
3.i and et for the deterministic forecast. The ensemble 
members are normally distributed about the mean for the 
stochastic model. The variables have a standard deviation 
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FIGURE 3.-Stream field after 7 days for deterministic (top) and 
stochastic dynamic (bottom) cases. The contour intervals are 
not the same. 

of 10 percent of the mean, but the initial variables are 
uncorrelated-all covariances are zero. The results after 
one week are shown in figure 3. We see that the deter- 
ministic forecast differs from the ensemble mean forecast. 
The features differ in intensity, position, and shape. As 
pointed out by Epstein (19693)) this does not mean the 
deterministic forecast is wrong, as it is possible that the 
deterministic solution would verify since it is a member of 
the ensemble. The stochastic solution represents the en- 
semble mean and stochastic solutions will be more 
representative since they have been designed to minimize 
mean square error based upon all the sources of 
uncertainty. 

It will be seen in later figures presented in this paper 
that, with small uncertainties confined to the initial 
conditions, the deterministic forecasts of the variables 
and the stochastic forecasts of their means will be essen- 
tially alike in the early stages of the time integration. 
However, the advantage of the stochastic equations is 
the additional knowledge given about the uncertanities 
of these variables and about how they are dynamically 
coupled. 

4. ENERGETICS OF UNCERTAINTY 
The results shown in the preceding section are similar 

to those of Epstein (19693). They give rise to certain 
questions. How does the uncerhinty grow? Why are some 
physical situations more prone to error growth than others? 

0 . 5  

2 . 0  

FIGURE 4.-Quasi-geostrophic energy diagram. Values from Wiin- 
Nielsen (1968). 

What fundamentally determines the evolution of the 
hypothetical ensemble of points in phase space? An 
attempt will be made to gain insight into the answers to  
these questions by viewing the energy processes. It is 
realized that complete answers would depend upon ana- 
lytical solutions of the originel nonlinear deterministic 
set of equations which, of course, are not ovailable. 

Many authors have contributed to the understanding of 
the atmosphere by considering the energetics of the 
deterministic equations. The intent here is to give a 
brief summary of the basic energy concepts. This will 
provide a foundation upon which to build the concepts of 
the energetics of uncertainty. 

There are three significant forms of energy in the 
atmosphere: internal, potential, and kinetic. I n  a hydro- 
static atmosphere, the internal and potential energy are 
proportional and are conveniently combined to form the 
“total potential energy.” In dealing with the exchanges 
between these types of energy, Lorenz (1955) found it con- 
venient to define the ‘‘available potential energy” as that 
portion of the total potential energy which may be avail- 
able for conversion into kinetic energy. Lorenz also 
derives an approximate expression for available potential 
energy which has since been shown to  be energetically 
consistent with the quasi-geostrophic equations (cf. 
Wiin-Nielsen 1968). Representative values of the gen- 
eration, conversion, and dissipation of energy obtained 
from the quasi-geostrophic calculations are given by 
Wiin-Nielsen (1965, 1968). His values, shown in figure 4, 
do not reflect the effects of the Tropics. In  this figure, 
A and K refer to available potential and kinetic energy; 
the subscripts Z and Erefer to zonal and eddy components 
of the energy, G(X) refers to  a generation of X, D(X) re- 
fers to a dissipation of x, @(X,Y)  refers to a conversion of 
X into Y.  The conversion C(AZ,Kz) is taken from 
Dutton and Johnson (1967). 

A positive generation will occur when there is diabatic 
heating where it is warm and cooling where it is cold. 
The dissipation of kinetic energy is due to friction effects 
in the boundary layer and internal friction within the 
atmosphere. The conversion C (Az,&) depends upon trans- 
porting heat from a warm latitude to  a cold latitude, and 
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alternately, the transport of cooler air from a cold lat- 
itude to a warm one. The conversion C(KE,Kz) depends 
upon whether the transport of angular momentum is 
toward latitudes of higher or lower angular velocity. The 
conversions C(A,K) are positive when warm air is rising 
and cold air is sinking. 

A more complete derivation of the stochastic dynamic 
energy relationships obt,ained from the stochastic dynamic 
model is given below, but all those deterministic energy 
relationships will be used without derbation. The baro- 
clinic stochastic dynamic equations and their energetics 
will yield, for the first time, substantial insight into why 
and by how much a deterministic forecast may differ 
from the real atmosphere 

5. DERIVATION OF ENERGY EQUATIONS 
In the absence of heating and friction, the condition 

~ a r t q X r X d j q = O  on eq (2) implies that F X :  is con- 
served (cf. Lorenz 19634. The corresponding adiabatic 
frictionless model [given by eq (9) and (10) with the linear 
and constant terms set equal to zero] conserves the quan- 
tity (K+A)  where K is kinetic energy and A is Lorenz’ 
approximated available potential energy. It is easily 
verified that 

and 
S A=- e:: 2 ~ 0  i 

where s is a scale factor given by P,,LLy2!g (9 is the ac- 
celeration of gravity). In  the remainder of this paper, 
the scale factor will be ignored and u0 will be referred to  
as u. 

The stochastic equations applied to the general expres- 
sion, eq (2), reveal that the quantity (&+ uii ) is * con- 

served. Denoting the conserved quadratic quantities as 
energy (they could represent enstrophy-mean squared 
vorticity) reveals that the stochastic dynamic equations 
provide for a partitioning of the energy as pointed o u t  by 
Epsteia (1969b). There is “certain” energy associated 
with the expected components of the ensemble and “un- 
certain” energy associated with the variances. The uncer- 
tain energy cannot be specified” (e.g., as to  location) 
within the model. 

The initial uncertain energy may represent, in part, 
some of the actual energy of the atmosphere; that is, it 
may be energy lost by smoothing the data, or turbulent 
energy, or any small-scale energy unresolved by the 
deterministic initial conditions. (In the statistical approach 
to analytical theories of turbulence, these variances are 
referred to as the “turbulent” energy.) However, the 
variances (whatever name they be given) are a direct 
measure of the growth of uncertainty in the values of the 
variables. The names used here are especially appropriate 
in that the growth of uncertainty will be seen to depend 

i 

( (  

upon the dynamic coupling between the variables, and 
the energy exchange processes associated with these 
couplings. 

The stochastic dynamic equations applied to  the deter- 
ministic equations for the two-level model, eq (9) and 
(10) , give the following result: 

1 
f 2a 

A = C  - [e:+ var (e,)] 

where var is variance. The quantity 

is the certain kinetic energy; 

is the uncertain kinetic energy; 

is the certain available potential energy; and 

is the uncertain available potential energy. 
The quantities +i and e, in the above equations now 

refer to the mean values of +, and 8, in the stochastic 
dynamic model, w-hereas the same symbols have been 
used for the deterministic stream function and potential 
temperature There will be no confusion, as only the sto- 
chastic dynamic equations will be referred to in the 
remainder of this paper. 

Taking the time derivative of eq (15) and (16) gives 

The zonal component of either energy includes the terms 
for which i= 1 and 8. The eddy component is computed by 
summing the terms over i = 2 , 3 , .  . . , 14; iZ8. Thus, 
expressions for A,, Kz, A,, K, and their uncertain counter- 
parts U.,, UKz, UA,, U K E  can be obtained from the 
expressions for i,, it, [vai (+,)I, and [vai (e,)]. By compar- 
ing the terms on the right-hand side of the equations for 
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the time derivatives of the various energy quantities, the 
exact energy relationships that exist between the quantities 
can be determined. Although this is a tedious manipulation, 
a procedure is given here since the energy relations which 
result are quite important. Instead of writing time 
derivatives of the eight different energy quantities, much 
space can be saved by “SelectiveIy” grouping terms 
and showing that the “grouped” terms are the indicated 
energy conversions. 

The restriction of adiabatic frictionless flow is removed 
and the complete equations for dI,  it, [vG ( $ J ] ,  and 
[vai (e,)] are 

$,=AMf+AMQi-CMt (19) 

= uAS, + B, + u CS t - u Di + Fi - Ei + UASQi + BQt, 

(20) 

[va; ($JI =~AMU, -~cMu,, (21) 

and 

[vai (e,)] =2UASU, +2 BU, + 2aCSUi-2uDUf - 2 E u ,  

refer to terms coming from first moments and eventually 
define certain energy relations, and M or S refers to a 
term’s source as being from the mean flow equation or the 
shear flow equation. The terms that come from second 
moments about the mean are 

1 C S U f = r  a;”# cov (e,, #J ,  + 1 

where Urefers to terms that eventually define uncertain 
energy relations. 

The summation sign in the above defhitions implies a 
double summation over k and Z with Z>k. Substituting 
eq (19) through (22) into the equations for the time rate 
of change of kinetic and available potential energy given 
by eq (17) and (18) results in energy change equations 
that are completely expressed with terms that are known 
a t  any given instant of time. The resulting equations are 

~ = C ~ ~ ~ f ~ ~ f + ~ Q f - C 2 0 1 , ~ + ~ ~ ~ , ( ~ A S f + P 3 f + ~ C S f  i 

-uDt+F,--{+uASQt+BQ,) + a ? ( m U f - C ‘ m i )  

+ U: ( uASU, + B Vi + u CSU~-UDU~-  E U t )  ] (26) 
and 

A= E[& (AS + B flu+ GS 1 - D,+ FJu- E& 
i 

+m&i+BQ,Iu) + (ASU<+But/u+ CSu<-oUi- EhJtIu) - 
(27) 

Selectively regrouping terms gives 
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Since Cikl=Ckl,=C1(k, eq (37) can be written 

859 

and the numbered brackets serve only to identify terms. 
Equations (28) and (29) can be made dimensional by 
multiplying each term by the scale factor (PoL2f3/g). 

It can be shown that w ;  corresponds exactly to the 
expected value of vertical velocity in pressure coordinates 
a t  the surface between the layers. Thus, the bracketed 
terms “l”, that appear in eq (28) and (29) with oppasite 
sign, agree with the definition of C(A,K) from quasi- 
geostrophic theory. The conversions for the certain A to K 
are then given by 

C(Az,Kz)=-~Ce,wi i=l and 8 (32) 
t 

and 

C(A,,K,)=--Ce,w; i=2,3, . . .,14; i #8 .  (33) 
i 

or 

Thus, the first term on the right of eq (39) is equal and 
opposite in sign to that of eq (36). This also implies that 
the sum of all the components in term “9” is identically 
zero. 

We have shown that term “9” gives C(A,,A,), or 
that the negative of term “9” gives C(A,,A,). By the 
same method used above, it can be easily verified that 
C(KE,Kz) is given by term “5” of eq (28). 

In  much the same manner as above, the conversions 
C(UA;,uAd, C(U&,Az), C(AE,UAZ), and C(AE,UAE) 
can be obtained from term “10” in eq (29). The proof of 
these conversions is given by Fleming (1970). The method 
involves considering the “zonal-eddy” triplets and all 
distinct “eddy-only” triplets. Many terms are involved 
that must be “tagged” as to their source, but the pro- 
cedure is the same as above. 

The conversions for the uncertain A to K are similarly The remaini+g energy conversions C ( U K , , ~ K , ) ,  
given by terms “2” : C(UKE,Kz), C(Ks,UKz), and C(KE,UKE) are obtained 

from term “6” of eq (28) just as described in the preceding 
i (34) paragraph. A complete summary of the certain and 

uncertain energy generation, conversion, and dissipation 

C(UA,,UK,)=-~wi’ i = 1  and 8 

c(uAE,uKE)=-~w;’ i=2,37 . * -,14; i#8* (35) equations is given below. 
i 

(40) 

(41) 

The generation of available potential energy is pro- 

In eq (29), since all the heating effect is contained in 
E, and F,, the certain generation is given by terms “7” 
and the uncertain generation by term “8”. These genera- 

G(Az)=C-8,(8T-Oi) h i= l ,8 ,  
portional to the correlation ‘of heating and temperature. i @  

G(AE)=x-ei(@-ei) h i=2,3, * * *, 14$#8, 
i Q  

D (&) =E @K[@ - 2##3, + e:] + U: ( 2 K ’ ) e :  i= l ,8, (42) tions are more clearly identified at  the end of thissection 
where the notation is replaced and the complete energy i 

equations are summarized. 
Since all the friction effects are in CM,, CSi, and Di, 

given in eq (28) by the terms “3” and “4”, respectively. 
The conversion C(A,, AE) is given by the negative 

of term “9” in eq (29). This is not as immediately evident 
as the other conversions so a proof is given below. 3’ mce 

each triplet of wave vectors capable of interacting down 
to some truncated scale, only one of the triplets need be 
considered for this proof. Consider the triplet (i,k,Z) 
where i is a zonal function and k and I are eddy functions. 
Equation (29), considering oniy term “Y’, gives 

the certain and uncertain dissipation of kinetic energy is i 
i=2,3, - .,14;i#8, 

(43) 

c(A,,A,) = xx 5 caZ (ek+ J i=l,8, (44) 
the spectral equations used here completely describe i k,1 Q 

c ( K E , ~ , )  = ~ , ~ , ( ~ ~ - - a ~ ) C i k z [ ~ t ( ~ k ~ 2 + e k e z )  
i k,Z + ei 2 +#kO J 1 i=1,8, (45) 

C (A,,&)= - C&?, i=1,8, (46) 
i 

(36) 
Az=Tef(ek+l-$ke,)+ c i k l  . . - 

C(AE,KE)= - x w : e r  i=2,3, . - , 14;i#8, (47) 
and for the eddies. i 

i=1,8, (48) AE=n[e,~k,f(e~$I-~~ei)+e2c,,(ei$k-#,s,)i+ 1 - - .. (37) G(UA,)=-x;var h (e,) 
I 



860 MONTHLY WEATHER REVIEW VOI.  99, No. f i 

i=2,3, * * *, 14;i#8, (49) 
h 
- var (e,) G(UA,) = - 

i a  

D(UKZ)=x&[var (#,)--2 cov (#,,e,) +var (e,)] 
i 

+U?(’LK’) var (e,) i=1,8, (50) 

and 

The energy generations, conversions, and dissipations 
of the baroclinic stochastic dynamic model are indicated 
in an energy diagram shown in figure 5. The energy 
equations would be the same for any number of orthog- 
onal functions, as the indices i, k, and I would simply 
have more values. If the original model were not a quasi- 
nondivergent model but a “primitive” equation model, 
the right-hand side of the energy equations would be 
different; however, the energy diagram in figure 5 would 
still be the same. 

The advantage of the stochastic dynamic method and 
of these energy equations is that one can quantgy the 
growth of uncertainty. Various calculations are included 
in this paper to bring this point out. Here, however, we 
will only qualify certain features of the energy diagram 
shown in figure 5. 

Numerical computations indicate that the largest 
energy conversion (involving an uncertain energy) is 
Az to  UAE. This is associated with baroclinic instability 
as is the conversion Az to A,. Large-scale baroclinic in- 
stability is the prime mechanism for transporting heat 
from low latitudes to higher latitudes. The resulting 
large-scale eddies are of importance in maintaining the 
general circulation of the earth’s atmosphere against 
frictional dissipation. It is not surprising that if the 
physical variables involved in such a large-scale nonlinear 
mechanism are not perfectly known initially, the future 
values of those variables (after the instability mechanism 
has had time to work) mill be known even less perfectly. 
This situation reaches the worst possible stage when the 
“true” values of the variables are near a critical condition 
where instantaneous development may or may not occur. 
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FIGURE 5.-Stochastic dynamic energy diagram. 

The conversions C(Az, UA,) and C(A,, UA,) given by 
eq (56) and (57) show the extent of this nonlinear growth 
of uncertainty. Both conversions are concerned with the 
uncertain transport of an uncertain amount of heat 
northward, but the former is by far the most important 
as it involves the certain or mean latitudinal temperature 
gradient (a relatively large quantity) multiplying un- 

- certain eddy components, while the latter conversion 
involves certain eddy temperatures (relatively small 
quantities) multiplying terms involving the uncertainty 
of latitudinal temperature gradient (anti other terms) 
which tend to remain small, relatively speaking. 

The conversions C(K,, UK.) and C(&, UK’) involve 
barotropic instability. These conversions are much 
smaller than C(A,,UA,), as would be expected since 
barotropic instability plays the lesser role in the real 
atmosphere. These conversions are discussed in this 
section. 

The conversions C(A,, UA,) and C(&, UK,) are 
due to the nonlinear exchange of energy between wave 
numbers other than zero, that is, the eddies. These con- 
versions can and do change sign, but their amplitudes 
are small and they will not be referred to in the remainder 
of this paper. 

The conversions C ( UAz, UKz) and C ( UAE, UK,) in- 
volve the variance of the vertical velocity, which is reason- 
able, since the conversions C (Az,Kz) and C (A,,KE) involve 
the vertical velocity in the deterministic calculation, and 
involve the expected value of the vertical velocity in this 
stochastic calculation. There are, however, missing terms 
in eq (54) and (55) for the uncertain conversions. The 

reason is simply that the vertical velocity involves a 
Jacobian, which in turn implies that eq (54) and (55) 
involve a triple correlation of moments about the mean. 
Up to this point, we have used the simple closure scheme 
of neglecting third moments. It is, therefore, necessary to 
keep third moments if an accurate account of C( UA,, UK,) 
anti C(UA,,UK,) is to be made. These additional terms 
are described later in this paper when the problem of 
closure is discussed. 

Up to this point, the uncertain generations and dissipa- 
tions are necessarily constrained to act in such a way as 
to remove uncertainty; that is, G(UAz) and G(UA,) will 
be negative (removing energy from their respective boxes) 
and D(UK,) and D(UK,) will be positive (removing 
energy from their respective boxes). This occurs because 
the physical parameters we have used to simulate the 
forces working on the atmosphere have been assumed to 
be known perfectly. This is what all deterministic forecast 
and simulation models do, also. The implications of this 
assumption are discussed in part 11, but the effects on 
the energy generation are discussed in a later section of 
this paper. 

Figure 5 reveals no conversion from AZ to UAz and Kz 
to UK,. This is because there is no communication be- 
tween the means of the zonal quantities and their respec- 
tive variances. This, in turn, is because the deterministic 
prognostic equations for the zonal components do not con- 
tain other zonal components in the nonlinear terms on 
the right hand side of their respective expressions. 

ENERGY FLOW IN A BAROTROPIC SYSTEM 

The energy flow characterized by figure 5 will be shown 
in numerical calculations. Fortunately, there are physical 
situations in which the numerical calculations must give 
exactly predictable results-this will suggest that the com- 
puter progmm is working properly. Numerical calculations 
of the complete energy conversions using eq (40) through 
(61) were carried out to convince the author that those 
conversion equations were correct. By adding from the 
conversions the input and output to  each energy “box” 
(through a complete Kutta-Simpson time step), we should 
obtain net changes that exactly agree with the energy box 
values before and after the time steps. Such calculations 
were instrumental in discovering initial algebra errors, 
but eventually these calculations were exact”, well 
within the bounds of roundoff error. 

The simplest case to consider is reversion back to a 
barotropic model by assuming that all Oc, linear terms, 
and constant terms are equal to zero. In  this model, the 
sum of zonal anti eddy kinetic energy is conserved. The 
energy diagram reduces to  that of figure 6. 

The total energy in the four boxes must be constant for 
all time. Results for a particular case are shown in table 1.  
It is seen that the required energy is conserved. The last 
digit in the total is in doubt because of the printing format 
used, but there is an extremely small “time” truncation 
error as well as roundoff error present. Waves 2, 4, and 6 
were used in this case. The time step was equivalent to 1.5 
hr . 

( L  
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UKE 3.068 

.44 52 .63 

161 1121 1181 

FXGURE ?’.-Initial energy conditions for stable-unstable barotropic 
test. Energy is in kJ.m-2. 

KE 998.19 
0.013 - - - 188 175 162 

161 I121 (181 

FIGURE 6.-Barotropic stochastic dynamic energy diagram. 
STABLE 

TABLE l.-Barotropic energy conservation (kJ m-2) 

Time 
(days) KA K s  UKz UKg Total 

0 1040.0 1120.0 10.0 172.0 2342.MMOO 
7 728.1 832.0 269.5 512.4 2342.oooOl 
14 766.7 403.6 167.8 1003.9 2342.0004 
21 821.8 470.8 220.3 829.1 2341.99997 

An important point concerning the value of the sto- 
chastic dynamic equations is brought out in table 1. There 
is not much that can be said about the eddies after two 
weeks, as UKE is about two and one-half times as great as 
KE.  Note that at  3-weeks, however, there is more certain 
energy in the system. The stochastic dynamic model does 
not allow the uncertaint5- t o  grow without limit-and 
this is realistic. In a barotropic flow, the energy distribu- 
tion oscillates back and forth with more energy alternately 
in the zonal component and eddy component. A character- 
istic period of 5 to  6 days for this process is shown by 
Thompson (1957), Wiin-Nielsen (1961), and others. At 2 
weeks, a greater portion of the energy is in the eddies but 
there is great uncertainty as to  exactly where the eddies 
are! The dynamics of the model then dicthte that the 
eddies should feed back their energy to the zonal flow, and 
at  3 weeks this has happened. The uncertain eddies give 
up their energy properly because the stochastic dynamic 
equations keep track of the uncertainties “dynamically.” 
The flow is actually more predictable at  3 weeks than at  2 
weeks. The zonal component is more predictable than any 
eddy components; there is one less degree of freedom. 

The growth of uncertainty in a barotropic model is 
studied with two cases having the same initial energy. 
The two cases differ only in the specification of the mode 
“2” zonal component amplitude, which results in an 
initially stable or unstable barotropic flow. Only the sign 
of this component is changed so that the energy is the same 
in each case; however, the sign change results in satisfying 
instability requirements. 

F=l 2.499 F l  1001.24 

UNSTABLE 

F l  998.54 

IJKE 3.07 KE 1WO.82 
0.013 -- TJ1 184 176 - 

161 1121 1181 16) 112) i iai  

FIGURE &-Energy conditions after 3 hr for stable-unstable case 
with E in kJ.m-2, E in 10-4 kJ.m-2.s-I. 

Figure 7 shows the initial conditions of each case where 
appropriate values of +$ have been chosen-to give the 
indicated energies, Waves 6, 12, and 18 in the 2-direction 
are chosen. Figure 8 shows the energy values and con- 
version rates after 3 hr. I n  the stable case, the waves 
are feeding energy to the zonal flow, while the reverse is 
true for the unstable case; where the waves are growing 
at  the expense of the zonal flow. Note that in both cases 
the growth of uncertainty is through C(KE,UKz) and 
subsequently C( UKz, UK,). The uncertain energy U& 
is acting as a “catalyst” in the early stages of this growth 
of uncertainty. 

A look at the behavior of the kinetic energy in mode “1” 
of waves 6 ,  12, and 18 is also given in figure 8. Initially, 
each wave had the same amount of certain and uncertain 
energy. Since wave 18 is more stable than the other waves, 
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TABLE 2.-Energy check for adiabatic frictionless model with energy i n  the units kJ.m* 

Weeks A2 AB KZ KE UAz UAE UKz UKE Total 

0 10, OOO 3926 1200 1200 100 39 12 12 16,488.300 
1 1,628 2680 e34 1886 400 6497 78 3685 16,487.881 
2 277 1402 480 1055 1225 7139 380 4627 16,487.791 
3 424 3276 1948 444 1883 342 6172 181 16,487.569 
4 114 2254 435 1435 832 5954 472 4990 16,481.411 
5 142 1195 416 8803 1665 6738 468 5059 16,487.275 
6 21 1804 421 963 1027 6852 276 6321 16,487.069 

STABLE 

1193.4 

UNSTABLE 

FIGURE 9.-Energy conditions after 3 days for stable-unstable case. 
Units are the same as in figure 8. 

it gives up its energy faster in the stable case. Wave 6 is 
more unstable than the other waves and is gaining energy 
faster in the unstable case. However, in both cases, the 
growth of uncertainty is greater in the smaller scales or 
higher wave numbers. If the energy diagram were further 
broken down to show relations within wave numbers, the 
cascade of uncertain energy to the higher wave numbers 
would be seen. That the smaller-scale errors should grow 
faster is nothing new or unnatural. Consider just a linear 
displacement of a small-scale feature by the zonal wind or 
by a large-scale wave. A small uncertainty in the large 
scale has a large effect on the small scale, as discussed by 
Lorenz (1 969). 

Figure 9 shows the energy and energy transforms at  
3 days. The stable case has less total uncertainty. Thus, 
3-day forecasts from initially stable situations will have 
better verification scores, or, in other words, the forecasts 
can be made with greater confidence. The stochastic 
dynamic method gives the expected state and a measure 
of that confidence. 

ENERGY FLOW IN AN ADIABATIC FRICTIONLESS SYSTEM 

A more complex model, with more degrees of freedom 
than the barotropic, results if the e t  are retained. The 
linear and constant terms are still zero. This is the adi- 
abatic frictionless model. Figure 5 gives the corresponding 
energy diagram (with the removal of the generations and 
dissipations) and the sum of the energy of the boxes is 
constant with time. Numerical results for a typical case 
(table 2) show that this energy is conserved even when the 
integration in time is carried far past the unpredictable 
stage. This model is the least predictable, as is discussed 
in part 11; its value here lies in the check it provides on 
the energy equations and the model itself. The integration 
has been carried out to 6 weeks with waves 2, 4, and 6 
and a time step of 3 hr. 

CERTAIN-UNCERTAIN ENERGY FLOW IN A BAROCLINIC 
SYSTEM 

The values of the heating and friction coefficients as well 
as the choice of u will determine the type of motion that 
will evolve. In a classic study showing the power of this 
simple two-level spectral model with but a single wave in 
the 2-direction, Lorenz (19633) was able to reproduce the 
different regimes of flow found in the rotating-annulus 
experiments of Hide (1953), including an irregular non- 
periodic flow typical of the atmosphere. In  that study, 
Lorenz let h = ~ = 2 ~ '  so that the controllable external 
parameters were 0; and h. Starting with a weak zonal 
flow with small superimposed perturbations, the different 
regimes of flow occurred for different external parameters. 

For his predictability experiment, Lorenz (1965) used 
three waves in the 2-direction, and values of u, 0: and h 
were chosen to give irregular nonperiodic flow. This study 
follows Lorenz in setting h = ~ = 2 ~ ' .  The purpose of 
this paper is to study stochastic concepts and not to  sim- 
ulate the atmosphere (which could hardly be accomplished 
by a two-level model). Nevertheless, it is desirable to 
choose parameters that give irregular nonperiodic flow 
resembling the flow patterns found in the atmosphere. 
This has been achieved by using values e:= 9/128, 
h= 15/128, and u=5/128. The values of e; and h are slightly 
less than those used by Lorenz (1965) for reasons given in 
part 11. Only 07 was retained in the linear term, implying 
a heating at  the Equator and a cooling at  the poles. 
Changes of these parameters are used in this study to 
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FIQURE 10.-Initial stream field $ of “return to  Hadley circulation” 
case. 

FIGURE 11.-Stream field after 3 weeks of return to  Hadley 
circulation case. 

clarify various concepts. When such changes are made, the 
new values are given. 

Energy is no longer conserved in the model when forc- 
ing and friction are included. However, an additional check 
is devised to insure that the stochastic dynamic energy 
equations are correctly derived and correctly programmed. 
A large value of u is used in a complex initial state of large 
eddies. The large u means that the upper level has a much 
higher potential temperature than the lower layer-a 
very stable situation. With this stable atmosphere con- 
taining frictional dissipation, the flow in the model should 
return to the steady-state Hadley circulation which has an 
analytical solution discussed by Lorenz (1963b). 

For this run only, the value of Q is double its commonly 
used value, that is, u=10/128. The initial stream field 
for this case is shown in figure 10. The resulting flow after 
3 weeks is shown in figure 11. The flow is approaching the 
equilibrium Hadley circulation with the proper analytical 
values for J.l and 8 , .  These values are obtained by solving 
eq (9) and (10) for the steady-state zonal flow which 
yields : 

and 
81 = $1 (62) 

81 = 8?/(1+4 (63) 

The initial values of J., and were 0.0452 and 0.0442, 

FIGURE 12.-Energy after 1 day foy return to Hadley circula- 
tion case with E in kJ*m-2, E in lO-‘ kJ.m-2-s-I. 

FIGURE l3.-Energy after 3 weeks for return to  Hadley circulation 
case. Units are the same as in figure 12. 

respectively-they converged to the common value of 
0.06521 which satisfies eq (63). The energy diagrams in 
figures 12 and 13 show that the stochastic dynamic 
energy equations we programmed correctly. The eddy 
energy and exchanges have nearly vanished, and the 
terms G(Az),  @(Az, &), and D(Kz) are approaching a 
steady-state common va,lue. 
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DAYS 

FIGURE 14.-Relative kinetic energy uncertainty as a function of 
time in the return to  Hadley circulation case. 

I INITIAL I 

Another important point is brought out by this case. 
The relative error of the eddies (uK,/KE) is decreasing. 
It is natural to expect that the absolute uncertainty of 
the eddies will drop because of the dissipation of the 
eddies themselves, bubit is not obvious that the relative 
uncertaintt would drop. In  the barotropic case, it was 
seen that when the situation was stable, the relative un- 
certainty was greater than in the unstable case. Figure 14 
shows the relative uncertainty as a function of time. 
The stochastic equations are energetically consistent and 
keep track of the uncertainty dynamically. As a result, 
the volume of the ensemble of points in phase space will 
eventually shrink to  a single point-the same point that 
the deterministic trajectory will ultimately arrive at-the 
steady-state solution of the phase variables. 

A particular example of the resulting energy trans- 
formation for the barotropic case with irregular flow is 
considered next. Many different calculations were made 
by varying different initial conditions and forcing param- 
eters. Quantitative discussions of these values and how 
they change will not be a part of this paper. Moreover, 
such a discussion may be of little value in that this 
baroclinic model is so severely truncated and contains 
the physically inhibiting use of a constant static stability 
(cf. Lorenz 1960). However, the qualitative effect of the 
growth of uncertainty can be assessed; in particular, the 
relative values of different uncertain energy conversions 
are typified by the example shown in figures 15 and 16. 

Figure 15 (left) shows an initial state of a particular 
case and the resulting energy values and conversions 
after 1 day (right). Figure 16 shows these values after 
1 and 2 weeks. Choosing and maintaining energy values 
corresponding to atmospheric values is somewhat difFi- 
cult (and perhaps meaningless) with such a severely 
truncated system. However, the initial energy values are 
close to winter values (cf. Wiin-Nielsen 1967) except for 
AZ which is too large by a factor of two. The latter was 
necessary to maintain nonperiodic flow in such a trun- 
cated system and this will be further discussed in part 11. 

Three general comments typical of all calculations and 
indicated in figures 15 and 16 are: (1) the conversion 
A, to  UA, dominates in the growth of uncertainty; (2) 

FIQURE 15.-Energy conditions in a case of irregular baroclinic 
flow initially and after 1 day with E in kJ.m-2, E in 10-' 
kJ.m-2.s-I. 

1 WEEK 1 WEEKS 

FIGURE 16.-Energy conditions in a case of irregular baroclinic 
flow after 1 week and after 2 weeks. Units are the same as in 
figure 15. 

the resulting uncertain energy values are considerably 
smaller for zonal components than they are for eddy 
components; and (3) the effects of heating and friction 
tend to slow the growth of uncertainty by acting to 
reduce the variances of the variables; that is, there is 
negative generation and positive dissipation of what has 
been called the uncertain energy. This is considered in 
greater detail in the following section. 

6. EFFECTS O F  IMPERFECT FORCING ON ENERGETICS 
The atmosphere is primarily forced by net radiative 

heating at  the Equator and cooling a t  the poles. However, 
there are secondary forces present which will vary with 
latitude and longitude, including complex radiation 
processes; release of latent heat and evaporation in precipita- 
tion processes; conduction of sensible heat; etc. None of 
these atmospheric processes is known perfectly, although 
some are known considerably better than others. A 
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prediction model simulates these processes by various 
parameters. The question that must be answered is, “How 
does uncertainty in the physical parameters affect pre- 21.145 

dictability?” The stochastic dynamic equations c a n  
provide answers to this question, but to understand these 
answers the energetics will be utilized. 

Consider, for example, that the et are still constant but 
that their values are uncertain. There is then a mean and 
variance for each 0: that contributes to the forcing. 
Thus, their deterministic tendencies are zero (being in 
in the general form of eq (2) with the a’s, b’s, and c’s all 
zero) and the stochastic dynamic equations involving 
the 0: only become 

(&=O (64) 
and 

I 

Thus, the means and covariances involving only the 0: 
do not change. However, even though cov (ei, 0:) may be 
initially zero, it is readily shown (cf. Fleming 1970) that 
correlations between the et and 0; will develop. 

The effect of the terms cov (ei, 0:) on the energetics is 
considered in the following where previous energy terms 
are assumed present. Then eq (22) becomes 

FIGURE 17.-Partial energy diagram after 3 days for a typical case 
where primary forcing is known “perfectly.” Units are the same 
as in figure l5. 

cov (e,, e:)= . . . + ~ F U  2h [vai (e,)]= . . . +- .a:+ 1 
(66) 

where 

Then eq (29) becomes 

A= . . .  

Carrying this term through the (8) equation reveals 
that -a:FU completes the definition of the uncertain 
vertical velocity. The term [ (a?u+l) /u]  FU is seen to be 
another component of the generation of uncertain avail- 
able potential energy. When these are added to their 
respective energy equations they become 

and 
h Q(UA)= . . . +- cov (e,, e;). 
U FIGURE 

66.9 I 
18.--Partial energy diagram after 3 days for same case as 

figure 17, but primary forcing parameter has 2.5 percent standard 
deviation. Units are the same as in figure 15. Thus, the inclusion of the notion of uncertainty in 

the diabatic heating contributes directly to the generation 
of uncertain available potential energy and to the conver- 
sion of U A  to  UK. Indirectly, it eventually contributes 
to all the terms. 

The difference in expressing the physical forcing 
“perfectly” versus expressing it “imperfectly” is fully 

brought out in part 11. A manifestation of that difference 
is revealed in figures 17 and 18 where partial energy 
diagrams are shown for two different cases dealing with 
primary forcing. In  one case, the primary €arcing is 
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assumed to be known perfectly; in the other case, the 
0: has a standard deviation of 2 1/2 percent of the mean 
value of e:. (The details of the initial conditions are not 
given here, as any set of conditions will show the quali- 
tative result that is brought out.) 

Note that in the “perfect” forcing the G(UA,) is 
negative, and when the forcing is “imperfect” the genera- 
tion of the zonal component of uncertain available 
potential energy is positive. From eq (48 ) ,  with no 
uncertainty in the heating term, G( UAz) is necessarily 
negative. The heating in the model is such that the largest 
latitudinal temperatire gradients are reduced and vice 
versa. Diabatic heating tends to eliminate uncertainty 
and push the system toward equilibrium. But if the heat- 
ing is uncertain, temperatures would get higher if heating 
is large and vice versa, et and 6: will become positively cor- 
related, and G( UA,) may (and does) become positive 
[cf. eq (70)]. 

Many interesting calculations that highlight the growth 
of error can be made with the energy equations. The 
nature of this paper will only permit a summary here. 

We have stated that, by dealing with the uncertainty 
dynamically, the expected forecast of an uncertain 
ensemble of initial conditions can result and the growth 
of uncertainty of the forecast can be viewed through the 
energetics. It has been shown that the stochastic dynamic 
equations that neglect third and higher order moments 
conserve the ensemble energy in those cases where the 
energy should be deterministically conserved. Epstein 
(1969b) has pointed out that, while dropping the third 
moments implies that the time derivatives of the indi- 
vidual variances are inexact, the equation for the time 
derivative of his kinetic energy did not contain third 
moments. This is indeed true and is the reason that the 
sum of the energy in the eight boxes of an adiabatic fric- 
tionless energy diagram is conserved. It is not assured that 
the energy exchange between these boxes is “accurate.” 
This last point is emphasized in the following section. 

7. THE CLOSURE PROBLEM 

Epstein (1969b) has made the solution of the stochastic 
dynamic equations tractable by simply disregarding third 
and higher ordw moments. He notes that this closure 
scheme is necessary in light of the vast amount of com- 
putation required. He also notes that the success of the 
deterministic equations, which are but a form of the 
general stochastic dynamic equations with the variances 
implicitly assumed to be zero, suggests that the truncated 
set will be more successful than the deterministic, and 
should be valid if the time domain is not too large. How- 
ever, there is evidence that this closure is not a good one. 
That third moments which are initially small or zero will 
not significantly alter the forecast of the first moments 
until they become large is not an obvious fact. It is pos- 
sible that the sum effect of many small third moments 
will be significant. There is also the question of their 

effect on the second moments. To underscore this last 
concern, consider the history of analytical theories of 
turbulence. 

turbulence 
originated from the statistical approach of Taylor (1921). 
These theoretical investigations are usually limited to 
the idealistic case of homogeneous isotropic turbulence. 
Homogeneity means that the statistical properties of 
the space domain of turbulence are independent of 
position in that domain, and isotropy means that the 
properties are independent of direction. The method of 
obtaining the statistical moments of the velocity field 
from the Navier-Stokes equation leads to the same type 
of closure problem faced in stochastic dynamic prediction 
of the primitive equations. The assumption of homoge- 
neity, however, leads to a tremendous simplification of the 
equations, that is, the mean velocity can be considered 
zero; After obtaining the Fourier transformation of the 
Navier-Stokes equation, the variance of the Fourier 
components of the velocity field is then proportional to 
the turbulent energy, and the third moments are necessary 
for nonlinear transfer of energy between eddies. A closure 
technique that was considered for many years was the 
quasi-normal theory of Millionshtchikov (1941) and 
Proudman and Reid (1954). This scheme retains a 
prognostic equation for the third moments but relates 
fourth moments to second moments by assuming a 
Gaussian distribution. It was pointed out by Ogura 
(1963) that negative values of energy are obtained from 
this closure scheme after a finite length of time. The 
effect of dropping third moments is not as drastic as in 
homogeneous turbulence, but its effect must be investi- 
gated. 

RELATION OF CLOSURE TO ENERGETICS 

Insight into the effect of the third moments is gained 
from considering their effect on the energetics. The 
effect is only derived for the kinetic energy equation in 
a barotropic model, but the results for a baroclinic model 
can similarly be evaluated and are only stated below. 
Considering only the third moment term, one can write 

The present day analytical ’ theories of 

Again, considering only this term, one obtains 

where the right-hand side would fall under the notation 
AMU as defined in the original energy equation develop- 
ment of the previous section. With the technique used in 
discussing term “9” in eq (29), it is readily seen that the 
third moment adds to the definition of C(UKE, UKZ) .  
If the variables et were included, the third moments in 
the temperature equation would become part of the term 
labeled ASU and would be seen to contribute to C(UA, 
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UK) and C( UA,, UAE). Consideration of each distinct 
triplet also reveals that nonlinear exchange of uncertain 
energy between wave numbers is now possible where it 
was not possible when the third moments were dropped. 
I n  the turbulence theory, this latter energy transfer is 
the nonlinear turbulent energy transfer between eddies. 

The important point here is that even though Epstein’s 
simple closure scheme assures conservation of total 
energy (certain and uncertain) in those physical systems 
where it should be conserved, the neglect of the third 
moments yields the result that the correct allocation 
of energy to specific “boxes” is not assured. The conse- 
quences of that misappropriation must be investigated. 

One may summarize the effects of the third moments 
by noting that they do not affect the conservation of 
energy. They are not explicitly involved with any conver- 
sion of certain to  uncertain energy, but they are explicitly 
involved in all transfers between uncertain energy com- 
ponents. Of course, if a nonlinear transfer between un- 
certain modes is incorrect, the subsequent exchange 
between those modes and certain modes will be affected. 
Evidently, one must consider numerical calculations which 
contain third moments to judge their effect on the other 
statistical properties. 

QUASI-NORMAL CLOSURE AND CONGRUENCY 

The derivation of a prognostic equation for third 
moments proceeds in the same manner as that used in 
deriving such an equation for the second moments (cf. 
Fleming 1970). Pollowing the general form for the primi- 
tive equations given in eq (2), the prognostic equation for 
the third moments is given by 

+ i k  l=  [ a j p q  ( P p  r.% I g + k  7 k l P - - a P q a k  1 + b l p g )  
P, P 

+ a k ~ q ( k J T j l c + b %  T~ l P - ‘ P ~ u 5 1 + x ~  l p q )  

+ a l P q ( &  r j k q + &  T 9 k P - f l P q u , k + h j . % p g ) ]  

where X refers to  fourth moment about the instantaneous 
mean. One must now make assumptions about the fourth 
moments or derive an equation for them and make 
assumptions about the fifth moments. The closure scheme 
considered here is analogous to the quasi-normal theory 
used in turbulence theory. Assuming that the initial values 
are multivariate normally distributed, an expression for 
the general fourth moment about the mean, k k t p P ,  can be 
found by generating the first, second, third, and fourth 
moments from the moment generating function. The 
fourth moment about the mean can then be expressed as 

~ k I p q = ‘ k l  apq+ a k p O  I q + ~ k q a l P *  (74) 

In  a multivariate normal distribution, the third mo- 
ments are identically zero and the fourth moments are 

expressible as products of second moments. If this expres- 
sion is used in eq (73), the system of equations is closed, 
but since it is used in the third moment equation, one can 
see how the “quasi” term originates. Inserting eq (74) 
into (73) yields 

A 

+ a k ~ q ( p ~  7 1 1 q + 1 1 ~  7 j l p  f a j p a t q +  ‘Jjq ‘Jip) 

+ a l P p ( k J  r ikq+& T j k P  + ~ 5 p ‘ k g +  a j q a k p  )I 
-x ( b 5 P  T k l , f  b . % P T ~  l p  f b l p  T j k p )  * (75) 

P 

Before evaluating this closure scheme we ask, “How 
can the merit of any closure scheme be verified?” We are 
concerned with more than just the verification of the 
original N dependent variables. We are interested in the 
evolution of the joint probability distribution of all those 
variables; less demanding, we wish to  know if the dynamic 
coupling between those variables and the measure of un- 
certainty associated with them is “representative” based 
upon all the associated uncertainties which have been 
discussed. Since arriving at  the true distribution requires 
solving the infinite set of moment equations, we settle for 
an approximation of the distribution. This is achieved by 
considering a great many samples in a Monte Carlo cal- 
culation as used by Epstein (1969b). 

In the Monte Carlo method used here, a sample is 
selected from the ensemble of points in phase space. The 
points are obtained at  random from a multivariate normal 
distribution with a preassigned mean and variance for 
each variable corresponding to the same mean and vari- 
ance used in a stochastic dynamic method. The deter- 
ministic trajectories in phase space are then determined 
for each of the points. The results of each of the deter- 
ministic forecasts are accumulated in an array at  specific 
times and any desired statistical quantity such as the 
mean, variance, etc., is computed from that array. When 
a great many deterministic trajectories are computed out 
to time t ,  the mean of those values at  time t1 is a good 
estimate of the expected value. Thus, the collective 
behavior of a great many samples in a Monte Carlo 
method gives the “norm” by which a closure scheme can 
be measured. 

Obtaining a good approximation to  higher order 
moments may demand an extremely large sample size; 
that size will be further compounded by the inclusion of 
uncertain forcing parameters. Nevertheless, we shall define 
lLcongruencyl’ in an order of moments to  mean that they 
are “superposable so as to coincide throughout’’ with 
Monte Carlo moments of the same order. Ideally, all the 
moments of a closure scheme should be congruent with 
their Monte Carlo counterparts. As the forecast period is 
extended, however, the effect of dropping the higher order 
moments d l  eventually destroy that conguency-even 
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FIGURE 19.-Comparison of quasi-normal closure by showing 
cosine components of wave 4. 

down to the lowest order moment, the mean. Congruency, 
a t  least in the lowest order, must be maintained in a 
stochastic dynamic forecast. It makes little difference how 
large the uncertainty becomes because each forecast user 
must determine his own limit of uncertainty. There is 
much useful information in knowing how uncertain a fore- 
cast is-plans can be formed from this information-but 
the integrity of the mean must be maintained or that 
information may be useless. 

The stochastic dynamic calculations that include third 
moments must be restricted to a barotropic model because 
of the vast amount of storage required. Such a calculation 
is shown in figure 19. The + I  had values ranging from 0.00 
to 0.06. The initial variance of each 4,  was l.0X10-5. 
Waves 2, 4, and 6 were considered in this case, and the 
value of the cosine component of wave 4 is plotted as it 
evolved in three types of forecasts: the deterministic, 
the stochastic dynamic with quasi-normal closure, and the 
Monte Carlo. 

It is seen that at 10 days, the quasi-normal closure 
scheme is still congruent in the mean, being very close to  
the Monte Carlo; and that both differ from the determi- 
nistic solution. After l l ) (  days, the first negative variance 
appeared in the quasi-normal calculation. At 187i days 
the calculation begins to “blowup”. The reason for the 
blowup is not the negative variance itself, but rather that 
energy is flowing from the uncertain boxes to the certain 
boxes at  an ever-increasing rate. The sum of the energy 
is still conserved, but only because the uncertain energy 
is becoming more and more negative with the certain 
energy becoming more and more positive, eventually 
resulting in an overly strong zonal flow that violates 
linear computational stability. The initial kinetic energy 
(certain and uncertain) was 2,342 units and the maximum 
zonal wind in the southern part of the channel was 34 m/s. 
After 19 days, the total kinetic energy was still remarkably 
conserved, being 2,340.4 units. However, UK, was 
-20,261 units with the large positive balance spread over 
Kz, K,, UK,, and the zonal wind in the southern part of 
the channel had reached 91 m/s. 

Orszag (1970) shows that the failure of the quasi-normal 
closure in homogeneous isotropic turbulence calculations 
can be attributed to the theory’s lack of a dynamically- 
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FIGURE 20.-Plot of moment coefficient of skewness of $8. 
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FIGURE 21.-Comparison of stochastic dynamic closure with no 
third moments by showing cosine components of wave 4. 

determined relaxation time-so that no slightly perturbed 
steady state can be approached. He shows numerical 
calculations of a weakly driven model system that begins 
with an initial equilibrium ensemble which should relax to a 
new stationary state. However, the system overshoots its 
new stationary state, and the energy density of some of 
the wave numbers is seen to  oscillate with increasing 
amplitude as time increases. A very similar effect is seen 
in figure 20 where the “moment coefficient of skewness” 
(m.c.s.) of one of the components is shown. This computa- 
tion is based upon the results of the same case shown in 
figure 19. One sees that the moment coefficient of skewness 
increases without bound. 

The results of the simpler scheme of dropping third 
moments for the same case are shown in figure 21. The 
figure shows that this scheme is realizable; in fact, other 
cases showed no tendency for negative energy out to 6 
weeks. But this simple closure scheme does not maintain 
congruency for as long as might be desired. Deviations 
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FIGURE 22.-Comparison of eddy-damped closure by showing 
cosine components of wave 4. 

from the Monte Carlo solution become important after 
13 days. 

EDDY-DAMPED CLOSURE 

In  dealing with analytical theories of homogeneous 
isotropic turbulence, a number of authors have tried to 
incorporate a damping effect on the third moments while 
retaining the quasi-normal assumption. Early work in this 
area was done by Edwards (1964) and more recently by 
Orszag (1970) and Leith (1971). The growth of the third 
moments is thus stymied by a damping term that is 
intended to simulate the “natural” damping of triple 
correlations that would take place if all the higher ordered 
moments were included. What this damping factor should 
be, or what it should be a function of, has not been analyt- 
ically determined. 

It will be important to know if the simplest type of 
damping will work in the stochastic calculations, because 
if so, then a more complicated form may ultimately be 
avallable. With this motivation, consider the eddy- 
damped form of the quasi-normal forecast equation of the 
third moments, eq (75), to be 

;jkl= . . . +[quashorma1 terms] . . . --krjkl (76) 

where k is a positive constant. The damping coefficient, k, 
could be a function of time, energy density, other statis- 
tical quantities, or any number of things but for our 
purpose an absolute constant is preferred. One is not 
completely in the dark as to the numerical value of k since 
it has dimensions of (time)-’, and one would expect that 
the time scale of the dynamic features should be reflected 
in its value. 

Results of calculations using eq (76) are shown in figures 
22 and 23. The initial conditions were exactly those used in 
discussing the quasi-normal approximation, the Monte 
Carlo method, and the simple stochastic dynamic closure 
method earlier in this section. I n  figure 22, the damping 
coefficient is 0.1. Clearly, the eddy-damped theory is more 
congruent than the simpler closure scheme. DifFerent 
values of the damping coefficient are used and the results 
compared in figure 23. The calculations are in very close 
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FIGURE 23.-Comparison of various eddy-damped closures by 
showing cosine components of wave 4. 

agreement d t h  the Monte Carlo results out to 18 days. 
The extremely good results obtained with this simple 

damping factor certainly indicate that the technique is 
applicable to stochastic dynamic predictions. The addi- 
tional calculations required for this method may not give 
sufficient improvement in the early stages of a forecast to 
warrant its use. However, recent turbulence calculations 
by Leith (1971) indicate that the effect of third moments 
being damped can be incorporated without calculating 
third moments at  every time step. This approach, called 

the eddy-damped Markovian approximation” is also 
discussed by Qrszag (1971). The saving of computer time 
resulting from this method may make the eddy-damped 
quasi-normal closure approach to the stochastic dynamic 
equations economically feasible. 

L l  

CLOSURE ON A DISPERSIVE SKSTEM 

In  his study of predictability, Lorenz (1965) assumedf, 
the Coriolis parameter, to be constant. Actually, on a 
global scale, f is a function of y and this dependence can 
be expressed as /3=dfldy. Prequently, /3 is considered a 
constant with a numerical value appropriate for 45’ lati- 
tude. The inclusion of the 8-effect causes a significant 
change in the direction and amplitude of the phase speed 
of the ultra-long waves; however, the calculations pre- 
sented in part II indicate that Lorenz’ assumption was 
correct; that is, the /.%effect is not important to predict- 
ability. 

The &effect gives rise to vortex foTces or restoring 
forces which act to restore displaced fliiid colbmns and 
move waves tvestmard. The waves (Rosshy waves) are 
dispersive; that is, the phase speeds are a function of the 
wavelength. A simple perturbation analysis yields the 
phase speed of these waves as u-p/nz where u is the 
constant mean flow and n is the wave number. This shows 
that Rossby waves always travel westward relative to 
the mean flow and are highly dispersive, but for the 
higher wave numbers the 8-term is less effective. 

An interesting paper by Benney and Newel1 (1969) 
discusses the closure problem that results when trying to  
solve the statistical initial value problem for a system of 
waves. The system is assumed to be spatially homogeneous 
and the problem is to close the hierarchy of equations for 
the statistical moments. These authors claim that in a 
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FIGURE 24.-Comparison of closure schemes with &effect and 
waves 2, 4, and 6 by showing cosine components of wave 4. 
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FIGURE 25.-Comparison of closure schemes with &effect and 
waves 4, 8, and 12 by showing cosine components of wave.8. 

weakly nonlinear system of dispersive waves there is a 
“natural” closure. The dispersive nature of the waves 
causes a decoupling of triple correlations and there is an 
approach to the Gaussian state, that is, a multivariate 
normal probability distribution. Benney and Newell pos- 
tulate that a second process is at  work regenerating higher 
moments by nonlinear couplings (due to the nonlinear 
inertial forces transferring energy between wave numbers) , 
but that this second process occurs over longer time scales. 
It is of interest to  test these ideas on a stochastic dynamic 
system with dispersive waves, but where homogeneity is 
not assumed. 

The p-effect, introduced with the same initial conditions 
that were used in the quasi-normal calculation (cf. fig. 
19), are used to give the results shown in figure 24. No 
negative energy occurs and figure 24 clearly shows that 
the quasi-normal closure method does not blow up. More- 
over, the same calculation using the eddy-damped method 
with coefficient k=O. 1 agrees with the quasi-normal calcu- 
lation almost exactly out to 16 days. Thus, the damping 
term is damping “nothing” or at  least a very small 
quantity. A comparison of figures 19 and 24 reveals that 
the P-effect has introduced a fast time scale into the 
system, as expected with no artificial divergence. 

The above results are for waves 2 ,  4, and 6 which are 
highly dependent upon 8. Higher wave numbers are not 
so dependent. Figure 25 shows calculations with the same 
initial values as before but for the waves 4. 8. and 12 

The amplitude of the cosine term of wave 8 is shown. Here, 
one sees that the quasi-normal theory blows up after 8 
days-the p-effect is not strong enough in these waves to 
give a natural closure. Note also that the results from the 
quasi-normal closure and the eddy-damped closure cliff er 
significantly from the deterministic solution after 6 
days-both in amplitude and phase. 

These calculations show that the discussion of Benney 
and Newell applies equally well to the stochastic dynamic 
prediction of the ultra-long waves. However, the practical 
application of numerical weather prediction must include 
much smaller scales or higher wave numbers than those 
where the P-effect is pronounced, so that the discussion of 
Benney and Newell is irrelevant for our purposes. 

8. CONCLUSIONS 
This paper has merely been an introduction into a few 

of the important concepts associated with the stochastic 
dynamic method. The formally exact stochastic approach 
to a nonlinear problem (with associated uncertainties) 
leads to an infinite unclosed set of moment equations. 
Epstein (1969b) has closed this system of equations in a 
very simple way. Calculations given here suggest that this 
closure may be sufficient for some applications. However, 
evidence has been presented that a better closure scheme 
should be used in extended time integrations. 

The stochastic dynamic equations which neglect third 
and higher order moments conserve the ensemble energy 
in those cases where the energy should be deterministically 
conserved. However, the neglect of third moments was 
shown to lead to a misappropriation of energy between 
the uncertain energy components. The quasi-normal 
closure scheme fails to give realizable results in the stochas- 
tic dynamic equations just as it fails in homogeneous iso- 
tropic turbulence theory. The eddy-damped closure 
method gave extremely good results out to 18 days as 
compared with Monte Carlo calculations. 

The stochastic dynamic approach treats the question of 
predictability or growth of uncertainty in an explicit 
manner. The use of the equations in considering the 
predictability of various scales of features is given in part 
11. We emphasize here that more can be provided than the 
usual notion of an average value of predictability. More 
important, the believability of the atmospheric variables 
(which depends upon all the dynamic processes a t  work and 
all the associated uncertainties) can ,be localized in space 
and time. In  addition, the nature and amount of this 
growth can be viewed through the energetics of the 
stochastic dynamic equation set. Thus, a full energy 
description of the growth of error has been presented, if 
only in simple models. 

There are two important implications concerning the 
stochastic approach that have been brought into focus in 
this study: (1) the method has value, and (2) the method 
is possible. We amplify on these in reverse order. 

The stochastic equations can be solved. The computer 
power needed is monumental but not infinite. The infinite 
set of moments required in principle is not necessary in 

~, -, .____ __. practice. It appears that the dynamical equations them- 
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selves damp the higher order moments. This was seen in 
the extremely accurate results obtained by a simple damp- 
ing of third moments. This is obviously related to the fact 
that the original nonlinear equations were quadratic. The 
author has derived the stochastic equations for a general 
cubic deterministic equation set and the closure problem is 
more complex. The instability and energy transfer mech- 
anisms in the quadratic hydrodynamic set involve triple 
correlations of deterministic variables. One might specu- 
late that the absence of any known significant interaction 
of four OT more variables accounts for the success of the 
closure used here. 

The value of the stochastic approach lies not in its fore- 
cast of the mean of the dependent variables. In fact, in 
the early stages of the forecast, there will not be too much 
difference between these and the deterministically com- 
puted values of these variables. The value of the method 
shown here is its ability to  forecast the uncertainty of the 
variables. We have shown that the stochastic equation 
set including third moments is energetically consistent. 
This means that the error growth is realistic and that the 
believability of each variable will evolve according to the 
dynamical situation at  hand. 
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